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ACRONYMS AND ABBREVIATIONS
ACT  Artemisinin-based combination therapy

DDT  Dichlorodiphenyltrichloroethane

EPI  Expanded Programme on Immunization

IRS  Indoor residual spraying 

IPTp  Intermittent preventive treatment for pregnant women

ITN  Insecticide-treated mosquito net

LLIN  Long-lasting insecticide-treated net

MACEPA  Malaria Control and Evaluation Partnership in Africa

MalERA  Malaria Eradication Research Agenda

MVI  Malaria Vaccine Initiative

MV  Mass vaccination

MMV  Medicines for Malaria Venture

PK/PD  Pharmacokinetic/pharmacodynamic

RBM  Roll Back Malaria

SIRS  Susceptible-infected-recovered-susceptible

WHO  World Health Organization
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PREAMBLE

PREAMBLE
Global control of malaria inherently involves 
consideration of a vast matrix of variables, 
each with its own set of complexities, values, 
and uncertainties. The malaria situation may not 
be any simpler at the national level, for example 
in countries with heavy malaria burden that are 
bordered by similar neighbors. As countries 
progress with deploying proven interventions, 
they are striving to maintain and improve on 
gains already made: there may be a sense that 
adding more (or new) interventions, possibly 
in new combinations, can further the gains on 
reducing infection and disease. But research 
identifying the optimal mix of interventions in 
different settings is not readily at the hands of 
decision-makers. 

In Africa today many countries are attaining 
higher coverage of their population with 
insecticide treated mosquito nets (ITNs), 
intermittent preventive treatment in pregnant 
women (IPTp), and prompt diagnosis and 
appropriate treatment for malaria. Some 
countries are adding indoor residual spraying 
(IRS) in certain areas and expanding this if they 
can afford it. Others are considering adding 
larviciding to their intervention mix, or more 
aggressive efforts to find infected people and 

treat them quickly so that they are not able to 
transmit parasites on to other mosquitoes. 
Additionally, many countries are anticipating a 
vaccine becoming available in coming years and 
will need to consider how best to use it. There 
are some countries that now have declining 
numbers of malaria cases and deaths and they 
recognize the need for alternative means of 
improvement. Urgent questions emerge from 
this remarkable progress, such as:  

��When, where, and to what levels should 
countries introduce IRS when they already 
have ITNs?

��Could countries stop using IPTp if malaria 
transmission intensity were considered low 
enough?

��When does it make sense to go into 
communities to identify all malaria-infected 
persons and treat them in order to further 
reduce malaria transmission intensity?

��In what age groups or risk populations should 
a vaccine be introduced to further control 
malaria disease or transmission?
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���Under what transmission circumstances does 
it make sense to introduce larviciding—or 
does that even work?

���What would be required to successfully 
eliminate malaria transmission in a formerly 
endemic setting?

��At what level of artemisinin-based combination 
therapy (ACT) drug resistance should a change 
to a different drug combination be made?

��At what level of insecticide resistance should 
a change to a different insecticide be made—
and then rotated to a third insecticide (or back 
to the original one)?

Developing models to inform responses to these 
questions can assist WHO in setting global 

malaria policy and malaria endemic countries in 
adapting and implementing those policies.

This is a time of rapid, positive change: in 
developments of new malaria control technologies 
and improvements in existing ones, the 
epidemiological profile/burden of malaria disease, 
and funding available for and commitment to fighting 
the disease. All this, when cast against a backdrop 
of a highly adaptable parasite, shifting national 
and global priorities, and decision-makers who are 
eager for guidance on what to do next, makes it clear 
that mathematical modelling can play a critical role 
in navigating complex public health decisions. In 
this context, this report was developed to provide 
background to the malaria community and public 
health decision-makers on mathematical modelling 
and to expand the dialogue on priority decision-
making and when and how modelling can help.

| PREAMBLE |
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CHAPTER I

Any strategy to solve a problem is based 
on some kind of model. If a problem has a 
simple solution, the model can be purely 
conceptual and it is sensible to implement 
the strategy (such as removing the handle of 
a particular water pump to prevent cholera) 
without wasting time on calculations. This 
can apply to disease eradication. Given 
the high efficacy, low cost and universal 
applicability of vaccination against smallpox, 
the eradication of smallpox proceeded with 
minimal mathematical underpinnings.

Global malaria control and eradication 
efforts, however, require massive changes to 
a complex web of interconnected biological 
systems. Deciding the best way forward is 
complicated by the potential for parasites 
and vectors to evolve, the waxing and 
waning of human immunity, behavioural 
changes in human and vector populations, 
and interactions among large numbers 
of heterogeneous sub-populations of the 
organisms involved. The range of conditions 
that favour malaria transmission is so diverse 
that responses cannot be based solely on the 
evidence acquired in randomized trials in just 
a few settings. Furthermore, many questions 
cannot be answered by field trials as they may 
be either too expensive or unethical. 

Yet the uncertainties should not stall responses. 
Choices must be made and incorporated into 
preliminary strategies to be implemented 
at various levels. These must be constantly 
re-evaluated using the latest surveillance, 
monitoring, and technical innovations. A 
conceptual model devised during planning will 
need to consider the many potential sources 
of uncertainty. If a model is to be rational and 
quantitative, it must be formalized and will 
inevitably involve mathematics. Mathematical 
models enable knowledge to be extrapolated 
and synthesized in a rational way, providing 
critical quantitative insights not possible 
otherwise.

As countries achieve scale-up and reach 
high coverage targets for malaria control 
interventions, they are faced with the question 
of what they should do next (1). The strategy 
for maintaining and enhancing the achieved 
reductions in transmission is not obvious. It is 
not clear if maintaining current coverage levels 
of interventions would continue to reduce 
transmission, stabilize transmission at a new 
level, or slowly give way to an increase in 
transmission. Field trials to understand these 
effects are only possible in a limited number of 
settings and do not provide information on long-
term dynamics. Modelling can build on available 
data, test multiple scenarios and combinations 

INTRODUCTION
Mathematical modelling involves the use of mathematics to describe, explain, or predict 
behaviour or phenomena in the real world. It can be particularly useful in investigating 
questions or testing ideas within complex systems. A mathematical model is an abstraction of 
a physical system that uses precise language to describe the system’s behaviour. The model is 
then analysed, solved, or simulated on a computer. The results can be interpreted in physical 
terms to aid understanding of the underlying system or to point to parts of the system that might 
be targeted for change.
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| INTRODUCTION |

of intervention strategies, and make verifiable 
predictions on what can be expected from these 
strategies. 

For example, regions that have achieved high 
coverage of ITNs need to decide whether there 
is an additional benefit to be gained from adding 
IRS as a second vector control intervention 
(additional examples of applying mathematical 
modelling to malaria control can be found in 
Box 1). The answer is likely to be that it depends 
on the situation, and modelling can help to 
determine the expected benefit in different 
situations. 

Furthermore, targets, both for coverage levels 
of malaria control interventions and for desired 
reductions in disease and transmission, are 
often dictated by finances, and set with little 
theoretical underpinning. However, recent 
advances in mathematical modelling of malaria 
can determine whether desired reductions 
in disease and transmission are realistically 
achievable or not, and help to define intervention 
coverage levels required for those reductions.

There are many examples where modelling can 
be useful to malaria control planning. This report 
is designed in two sections; the first provides 
a summary overview of the mathematical 
models of malaria, their history and role in the 
fight against the disease, and their potential in 
planning for malaria control and elimination. 

The second section provides a Technical 
Annex that includes a glossary and examples 
of extensions to the basic malaria model. As a 
whole, this report demonstrates how and where 
mathematical modelling can be useful to malaria 
control, where it should be central to planning, 
and the limits to which modelling can reasonably 
provide answers or inform strategies. This report 
follows recent related publications (2), and the 
Malaria Eradication Research Agenda (MalERA) 
report on modelling that focuses on modelling for 
malaria elimination (3). 

While there are four types of human malaria, most 
malaria models have focused on Plasmodium 
falciparum because it is more prevalent, more 
dangerous, and simpler to model. Consequently, 
this report focuses on P. falciparum malaria but 
refers to other species where appropriate.

The report starts with a brief overview of the 
some of the techniques of modelling and types 
of models. It provides an outline of the history of 
mathematical epidemiology, with an emphasis on 
developments in malaria control and modelling. 
It explains some of the more important concepts 
of malaria modelling and surveys the different 
models in use today, their advantages and 
disadvantages, and some of the challenges 
ahead. It also discusses the place of modelling in 
the global malaria control infrastructure and its 
future direction.
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Box 1: Three examples of how mathematical modelling can be 
applied in country settings

Example 1. Building a model to understand the 
potential implications of combining ITNs and IRS

Several African countries have achieved high 
coverage of ITNs and are now considering the 
potential benefit (in terms of reducing disease 
burden or interrupting transmission) of adding 
IRS as an additional means of vector control. 
Different mathematical models are required in 
order to produce outputs that would reasonably 
inform understanding about this issue. The 
models need to:

��accurately describe the malaria transmission 
cycle including malaria infections in humans 
and mosquitoes;

��account for the effects of malaria infection 
in humans on clinical disease, morbidity, and 
mortality;

��include the effects of the health system on 
malaria transmission and disease;

��account for the effects of ITNs and IRS on the 
malaria transmission cycle;

��use available data in model inputs (such 
as pre-intervention transmission level, 
predominant vector species, population age 

structure, first line treatment drug for malaria) 
and outputs (such as incidence of infection, 
age-prevalence of parasitemia, age-incidence 
of mortality) to estimate parameter values for 
the model;

��use additional data for model outputs to ensure 
that it can reproduce data that it has not been 
fit to; 

��include a set coverage level of ITNs to see the 
corresponding disease burden; 

��add various coverage levels of IRS to see the 
effects on disease burden and transmission;

��compare different insecticides to see what is 
most appropriate to the situation, especially 
when insecticide resistance is taken into 
account;

��use cost data to determine the cost-
effectiveness of adding IRS.

Adding a model for the evolution of resistance 
would allow for the testing of resistance 
management strategies with the combination of 
ITNs and IRS.
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Example 2. Building a model to understand the 
potential role of active surveillance

Countries already having achieved high coverage 
levels of one or more vector control interventions 
may want to know whether active surveillance 
can additionally reduce disease burden or lead to 
interruption of transmission. To find out, several 
models are required that need to:

��include vector control interventions as 
described in Example 1;

��use available data on the effectiveness of active 
surveillance in detecting and treating malaria 
infections;

��when combined, demonstrate the effects of 
different coverage levels of active surveillance 
at various degrees of efficiency in reducing 
disease burden;

��demonstrate in what situations active 
surveillance can reduce transmission to zero;

��include data on imported cases to see if active 
surveillance can maintain elimination (but 
only if active surveillance is found to lead to 
interruption of transmission);

��apply cost data to determine cost-effectiveness 
of active surveillance (if active surveillance 
does not lead to interruption of transmission).
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Example 3. Introducing malaria vaccines

A reasonably effective malaria vaccine could be 
an important tool in malaria control. Policymakers, 
researchers, health ministries, donors and others 
are now considering two critical questions: 

To begin answering both questions, two models 
are needed: 

��a full model with vector control interventions as 
described in Example 1;

��a model for the effects of a vaccine on the 
parasite and on human immunity.

To answer the first question about transmission 
settings and deployment strategies, the models 
must:

��use data to estimate parameter values for the 
given vaccine;

��have the ability to analyse or simulate the 
effects on disease burden and transmission of 
introducing the vaccine in different  transmission 
settings; with different deployment strategies 
(Extended Programme on Immunization [EPI], 
mass vaccination [MV], EPI+MV); and at 
different coverage levels).

In combination, these models will make it possible 
to determine under what conditions the vaccine 
might be most effective in reducing disease 
burden or interrupting transmission.

To answer the second question about properties 
that would make a vaccine worth developing, the 
models must have capacity to:

��analyse or simulate the effects on disease 
burden and transmission caused by
i)   different kinds of vaccines 

(pre-erythrocytic, blood-stage, 
mosquito-stage transmission blocking)

ii)   vaccines with different efficacies
iii)   vaccines with different half-lives
iv)   vaccines in different transmission 

settings
v)   vaccines with different deployment 

strategies (EPI, MV, EPI+MV)
vi)   vaccines at different coverage levels; 

��determine what vaccine (or combination of 
vaccines), and under what setting, has the 
desired effect in reducing disease burden and 
transmission;

��incorporate cost data to determine whether the 
desired effort of the vaccine is worth the cost of 
developing and deploying the vaccine.

1.  What are the transmission settings and 
deployment strategies that can potentially 
make a given vaccine most useful? 

2.  What properties would a new vaccine need to 
have to be worth developing? 
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Mathematics is the logical study of quantity, 
arrangement, form, and space. Statistics is 
the science of collecting and interpreting 
quantitative data. While mathematical analysis 
focuses on the underlying processes that drive a 
system and does not necessarily deal with data, 
statistical analysis starts with data and works 
backwards to infer cause. In modelling malaria, 
as with other diseases or systems, statistics and 
mathematics are frequently combined: statistical 
analysis is used to estimate the parameters 
of mathematical models by comparing model 
predictions with data.

Models are commonly classified as deterministic 
or stochastic. Deterministic models assume the 
system follows a fixed and defined rule with no 
random variation or noise; stochastic models 
assume that randomness or noise is present. 
Most modelled systems include complexities that 
are not understood and cannot be represented, 
and are treated as random noise. Stochastic 
models assume this randomness is important and 
explicitly include it in the behaviour of the system. 
Deterministic models assume the randomness 

has a negligible effect and consider only the 
average or mean behaviour of the system. 

Stochastic models are essential to evaluate 
interventions designed to reduce malaria deaths 
because deaths are an important and relatively 
rare event. Similarly, in malaria elimination, 
stochastic models will be important to analysing 
the risks of reintroducing malaria in receptive 
areas, as such risks are often related to the 
behaviour of individuals, rather than populations.

Another important distinction is between static 
and dynamic models. Static models assume 
the system has reached a steady state solution 
that does not change with time and study the 
properties of the system at equilibrium; dynamic 
models, on the other hand, study the evolution 
of a system over time. Similar to the contrast 
between deterministic and stochastic models, 
static models are simpler to formulate and 
analyse, while dynamic models, though more 
difficult to formulate, allow for more analysis 
and the inclusion of those aspects of the physical 
system that are interdependent. Dynamic models 

CHAPTER II

t

OVERVIEW OF MATHEMATICAL 
TECHNIQUES AND TYPES OF MODELS
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can be either deterministic or stochastic, and 
dynamic models may lead to static analysis of 
equilibrium points.

Dynamic models may treat time as discrete units, 
leading to difference equations, or they may 
consider continuous time, leading to differential 
equations. Much of the history of mathematical 
modelling of malaria, and mathematical modelling 
in general, has consisted of population-level 
differential equations and (to a lesser extent) 
difference equations. While differential 
equations are often easier to analyse, difference 
equations are frequently easier to simulate on a 
computer. The choice between the two depends 
on whether the dynamics of the system are better 
approximated with continuous or discrete time, 
and also on the questions asked of the model.

Traditionally, most models have tended to 
be population-based, treating all individuals 
within a population as identical. With the rise 
in computing power, the past two decades 
have brought strong growth in individual-based 
models that simulate individuals (or communities 
of individuals) and their interactions within a 
population. Since the models include interaction 
at an individual level, they can incorporate a 

high level of detail and complexity, making them 
more realistic than traditional population-level 
difference equation or differential equation 
models. They can also answer questions that 
are difficult or not feasible with population-level 
equations, such as the effects of changes in 
human behaviour in response to epidemics. But 
they are also more difficult to analyse or fit to 
data, requiring substantial computing resources.

In many fields of physics, where a few simple 
rules largely govern the behaviour of many 
systems, analytical models have been able 
to make reliable quantitative predictions. 
However, in modelling of malaria (and other 
infectious diseases), where there are many 
unknown and seemingly stochastic variables, 
analytical models have been more useful to 
better understand the underlying processes 
and factors that drive malaria transmission. 
Detailed individual-based models can provide 
quantitative evaluations and predictions of the 
effects of interventions on the levels of malaria 
transmission, morbidity and mortality, though 
they do not always give general rules. Both 
paradigms of models are useful and have their 
place in our understanding of malaria and in 
planning for malaria control.

| OVERVIEW OF MATHEMATICAL TECHNIQUES AND TYPES OF MODELS |
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CHAPTER III

HISTORY OF MALARIA MODELLING AND 
MATHEMATICAL EPIDEMIOLOGY
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The first modern example of mathematical 
modelling influencing public health policy was 
Daniel Bernoulli’s 18th century investigation of 
improved life expectancy from inoculation against 
smallpox. In 1760, Bernoulli used a mathematical 
model to show that the benefits of inoculation 
outweighed the negative consequences of 
artificial smallpox and its subsequent spread. 
This work, published in 1766, was the first 
to mathematically describe the proportion 
of susceptible individuals at equilibrium of 
an endemic infection in terms of the force of 
infection and average life expectancy (4–6). 

In the late 19th century, Ronald Ross discovered 
that mosquitoes transmit malaria parasites. 
He went on to develop the first mathematical 
model for malaria transmission. He started by 
relating mosquito flight distances and densities 
to larval control (7). After overseeing malaria 
control activities in Mauritius, he published 
his first transmission model for malaria (8), 
before publishing his more famous differential 
equation model (9). Ross introduced the idea of 
a threshold condition in epidemiology, a critical 
density of mosquitoes, below which the malaria 
parasite would die out. Ross’s mathematical 
models drove the first few decades of malaria 
control when efforts focused on larviciding and 
destruction of larval breeding sites.

In the late 19th and early 20th centuries, there 
was significant progress in mathematical 
epidemiology, including the first epidemic 
model by En’ko to fit measles data (10, 11). The 
seminal model by Kermack and McKendrick 

(12) in 1927 and its subsequent extensions 
have driven, and continue to drive, much of 
mathematical epidemiology today. Dietz (13) 
and Brauer (14) have surveyed the history of 
mathematical epidemiology and the importance 
of these early contributions.

As surveyed by Heesterbeek and Dietz (15), 
Heesterbeek (16), and Nishiura et al (17, 18), 
the concept of the basic reproductive number 
(R0) slowly emerged from the end of the 18th 
century through to the early 20th century, 
eventually accepted in epidemiology as, “the 
expected number of secondary cases produced 
by one typical infected individual during its 
entire infectious period, in a population of only 
susceptible individuals”.

Mathematical modelling started to play a more 
important role after the World Health Assembly 
voted in 1955 to eradicate malaria, and the 
World Health Organization (WHO) coordinated 
a Global Malaria Eradication Programme based 
largely on IRS with DDT. In the early 1950s, 
George Macdonald took the first steps towards 
testing Ross’s theory with epidemiological (19) 
and entomological (20) field data. Field trials 
with DDT in the early 1950s had demonstrated 
that it was an effective way to interrupt 
malaria transmission. Macdonald’s analysis 
helped to explain that DDT and other residual 
anti-imago insecticides worked because they 
greatly reduced the number of mosquitoes that 
would live long enough to survive sporogony 
and transmit malaria (21).



| OVERVIEW OF MATHEMATICAL TECHNIQUES AND TYPES OF MODELS |
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One of Macdonald’s biggest contributions to 
malaria theory was his emphasis on defining 
and measuring parameters, such as the 
basic reproductive number and the stability 
index, that were operationally relevant 
for eradication. During the Global Malaria 
Eradication Programme, mathematical models 
were also used for other purposes, such as 
establishing realistic response timelines for 
interruption of transmission (22).

In the 1970s, a large-scale malaria control 
project was launched in Garki, Nigeria, to 
evaluate whether malaria could be controlled 
in an African context with multiple, combined 
interventions. In planning the Garki project, 

an innovative new difference equation 
mathematical model was developed (23) 
that improved the model for superinfection, 
considered the development of immunity 
in two stages, and considered a type of 
transmission-blocking immunity (individuals 
were infectious only if they were non-immune 
and recently infected). The Garki model was 
able to reproduce, at least qualitatively, the 
age-specific patterns in malaria prevalence.

There have been numerous surveys on the 
mathematical modelling of malaria and infectious 
disease that summarize these developments 
and explore model extensions (24–30), some of 
which are explored in Chapter 4.



In the three and a half decades since the 
publication of the Garki model, there have been 
many scientific and technological developments 
that have directly and indirectly driven malaria 
modelling. Foremost among these have been 
advances in computers that have made once 
prohibitively expensive computations and 
simulations commonplace. Great progress has 
been made in our understanding of the biology 
of the disease, from the population level of 
transmission to the molecular level of the 
interaction of the parasite’s surface proteins with 
the human immune system. There have also been 

significant advances in the mathematical and 
statistical methods used to model and analyse 
physical and biological systems, including: the 
development of network theory, the progress 
in statistical methodologies and the creation 
of spatial statistics, and the development of 
individual-based models. These changes have led 
to new modelling techniques and types of models, 
and improvements to existing ones. Malaria 
modelling has continued in several directions, with 
models exploring different facets of biology and 
natural history, and the effects of interventions 
and their evolutionary consequences.

CHAPTER IV

t

t

t

CURRENT MALARIA MODELS:  
MAIN CONCEPTUAL DEVELOPMENTS
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Box 2: The Plasmodium life cycle and vector feeding cycle
The Ross–Macdonald model is a 
basic quantitative description of 
the Plasmodium life cycle (Fig. 4.1) 
and the vector feeding cycle 
(Fig. 4.2). The parasite enters the 
mosquito during a blood meal and 
the mosquito becomes infectious 
10–16 days later, after the parasite 
develops into sporozoites. In the 
meantime, the mosquito will have 
fed several times and most infected 
mosquitoes will die before they 
become infectious. Mosquitoes 
that survive to become infectious 
can then give several infectious 
bites before they die.

Human infections begin during 
the mosquito blood meal when 
sporozoites enter the skin. 
Parasites are not obvious in the 
blood until about 11 days later. 
A human with a P. falciparum 
infection is not infectious until 
a fraction of the blood-stage 
parasites become gametocytes 
and then mature, 8–10 days later. 
Untreated or improperly treated 
infections last about 200 days on 
average, though some infections 
can last more than a year. As 
long as the blood-stage parasites 
persist, some gametocytes will 
be produced. The number of 
mosquitoes that will become 
infectious depends, in part, on 
the number of mosquitoes that 
bite humans, the rate at which 
parasites develop, and the 
longevity of the mosquitoes.

Figure 4.1 
The malaria life cycle

Red Blood 
Cell Cycle

Liver Stage
Gametocytes

Zygote

Oocyst
Sporozoites

Mosquito 
Salivary Gland

Host-seeking

Host encountered

Biting
Resting

Ovipositing

Source: Modified from Chitnis et al (31).

Figure 4.2 
The feeding (or gonotrophic) cycle 
of the female mosquito vector
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Box 3: Basic reproductive number for the Ross–Macdonald model

The seven basic parameters that describe malaria transmission, with their mathematical 
expressions in parentheses, are:

Number of female mosquitoes per human host (m)

Number of bites per mosquito per day (a)

Probability of transmitting infection from infectious mosquitoes to humans per bite (b)

Probability of transmission of infection from infectious humans to mosquitoes per bite (c) 

Recovery rate of humans (γ) 

Death rate of mosquitoes (μ)

Extrinsic incubation period (τ)

The questions that can be answered for R0 in terms of the above malaria parameters are:

How long does a person remain infectious? (1/γ) 

How many times is a person bitten by vectors each day? (ma)

What fraction of mosquitoes becomes infected after feeding on an infectious human? (c) 

What fraction of mosquitoes survives sporogony? (e−μτ )

How many human blood meals does a vector take over its lifetime? (a/μ)

What fraction of blood meals taken by infectious mosquitoes cause an infection in humans? (b)

Multiplying the six terms together, the basic reproductive number is

Foremost among the concepts used to describe 
malaria transmission is the basic reproductive 
number, R0. It is often used as a measure of 
the severity of disease transmission and the 
possibility or ease of disease elimination. While 
each model for malaria transmission would lead 
to its own definition of R0, the details of R0 
from the Ross–Macdonald model are described 
here. R0 summarizes transmission providing a 

quantitative answer to the question, “How many 
infectious humans could be expected from a 
single infectious human after just one genera-
tion of the parasite, assuming all other humans 
and mosquitoes are susceptible?” Box 3 shows 
the division of this question into six simpler 
questions and their answers in terms of basic 
malaria parameters. R0 is the product of those 
six answers.

R0 = ma2bce-μτ

γμ

21

M
AT

H
EM

AT
IC

A
L 

M
O

D
EL

LI
N

G 
TO

 S
U

PP
O

RT
 M

A
LA

RI
A 

CO
N

TR
O

L 
A

N
D 

EL
IM

IN
AT

IO
N



The Ross–Macdonald model describes changes in 
the fraction of infected humans and the fraction 
of infectious mosquitoes (i.e. the sporozoite rate) 
over time as infections are acquired and cleared. 
If R0 is greater than 1, then a single infectious 
human would tend to leave more infectious 
humans and as a consequence, the parasite rate 
would increase until it reached a steady state in 
which new infections were balanced by cleared 
infections.

Mathematical models can provide a good 
qualitative description of malaria, even if there 
is uncertainty about the underlying quantities. 
Despite the uncertainty and quantitative 
differences among models, R0 often provides a 
unifying concept. When indexed to parasite rate 
or other routinely collected malaria measurement 
indices in a credible way, R0 provides practical 
guidance on the extent to which transmission 
would have to be reduced to eliminate malaria. 
It is important to note, though, that when models 
include seasonality or demographic heterogeneity 
(in humans or mosquitoes), R0 may not necessarily 
correspond to its initial definition of “the expected 
number of cases arising from one index case in a 
fully susceptible population”, but rather, provide 
a threshold for whether or not an introduced 
case would lead to the disease persisting in the 
population.

Some extensions to the basic malaria model 
include:

��superinfection, within-host dynamics and 
immunity;

��heterogeneity;

��human demography;

��mosquito population dynamics;

��seasonality;

��interventions;

��migration: reintroduction risk (vulnerability) 
and outbreak risk given reintroduction 
(receptivity);

��mapping malaria;

��drug and insecticide resistance.

Detailed explanations of these extensions can be 
found in the Technical Annex.

| CURRENT MALARIA MODELS: MAIN CONCEPTUAL DEVELOPMENTS |
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CHAPTER V

To aid decision-making, models can be 
structured so that inputs and outputs are 
relevant to the needs of the clients. In malaria 
control, these clients comprise a broad range 
of decision-makers with responsibility at global 
and local levels, acting in both the public and 
private sectors. Clients include those developing 
new interventions, field researchers analysing 
interventions, and those dealing with global and 
national coordination and prioritizing control and 
elimination efforts.

The research and development process for any 
range of products has its own scientific agenda, 
and is likely to make use of models to help 
optimize product performance. These include 
strategic models that analyse the underlying 
dynamics of the system and provide a framework 
for understanding how an intervention might 
work and which elements may be susceptible 
to modification. Product profiles also need to be 
developed with the likely public-health effects in 
mind, and this requires tactical models that aim 
to quantify the real-world impact.

Once an intervention is available, tactical 
models are needed to help decide how best to 
deploy it, if at all. These models need to provide 
decision-makers with comparative information 
on the likely costs and health effects over 

time. Model predictions should be adjusted to 
the local setting, taking into account both the 
epidemiological and health systems.

Health policy decision-makers need to decide 
whether their focus is malaria control, elimination 
or eradication because each has different 
modelling requirements. If the focus is on control, 
decision-makers might aim to maximize cost-
effectiveness in different geographical regions. 
Eradication demands a single, flexible global 
strategy that must also consider the ways in 
which different regions interact (through human 
migration, for example).

The RBM Partnership has set the following targets 
—for 2010, 2015, and beyond—to control malaria 
through universal intervention coverage (32).

By 2010: 

��80% of people at risk from malaria use locally 
appropriate vector control methods such as 
long-lasting insecticidal nets (LLINs), IRS, and, 
in some settings, other environmental and 
biological measures.

��80% of malaria patients are diagnosed and 
treated with effective anti-malarial treatments.

ROLE OF MODELLING IN MALARIA CONTROL
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��In areas of high transmission, 100% of pregnant 
women receive IPTp.

��The global malaria burden is reduced by 50% 
from 2000 levels to less than 175–250 million 
cases and 500 000 deaths annually from 
malaria.

By 2015:

��Universal coverage continues with effective 
interventions.

��Global and national mortality is near zero for all 
preventable deaths.

��Global incidence is reduced by 75% from 2000 
levels to less than 85–125 million cases per year.

��Achievement of the malaria-related Millennium 
Development Goal—halting and beginning to 
reverse the incidence of malaria by 2015.

��At least 8–10 countries currently in the 
elimination stage achieve zero incidence of 
locally transmitted infection.

Beyond 2015:

��Global and national mortality stays near zero for 
all preventable deaths.

��Universal coverage (which translates to ~80% 
utilization) is maintained for all populations 
at risk until local field research suggests that 
coverage can gradually be targeted to high-
risk areas and seasons only, without risk of a 
generalized resurgence.

��Countries currently in the pre-elimination stage 
achieve elimination.

In meeting these targets, the questions that 
mathematical modelling can help to answer are 
central to all levels of malaria control. The seven 
constituents of the RBM Partnership, (endemic 
countries, bilateral government partners, private 

foundations, industry, academia, nongovernmental 
organizations, and international organizations) 
can each be placed, to varying extents, in at least 
one of five functional categories:

��malaria control policy-makers at global and 
regional levels

��malaria control planners at country and local 
levels

��academic researchers

��product research and development planners 
and implementers

��donors.

These functional categories can each benefit 
in unique ways from mathematical modelling of 
malaria to inform policies, strategies, and plans, 
as explained below.

Malaria control policy-makers at global and 
regional levels
The leading policy-making body at the global 
level is WHO, which issues, as one of its core 
missions, evidence-based, objective guidelines. 
Other international organizations, such as the 
World Bank; the Global Fund to Fight AIDS, 
Tuberculosis and Malaria; the US President’s 
Malaria Initiative; and the Bill & Melinda Gates 
Foundation, have substantial resources to 
invest in malaria control and may have influence 
on how guidance is adapted and implemented 
at country level. For all of these organizations, 
modelling can fill an important gap by integrating 
epidemiological and health systems dimensions, 
and examining all major malaria interventions in 
a single framework.

The most valuable modelling information for 
policy-makers is on the effectiveness and cost-
effectiveness of malaria interventions and their 
combinations in different settings, in reducing 
transmission, morbidity and mortality, and in 
potentially interrupting transmission. Modelling 

| ROLE OF MODELLING IN MALARIA CONTROL |
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can generalize the results of randomized 
controlled field trials and programme data to 
a wide variety of situations. Modelling can 
help to determine optimal combinations and 
intervention strategies.

Given the targets for 2010 and beyond described 
above, modelling can help to answer such 
questions as:

��Do the goals that describe reductions in burden 
follow naturally from the target intervention 
coverage levels? 

��Is it beneficial to add a second vector control 
intervention to a population with already high 
coverage of one intervention? If so, under 
which circumstances? Would an alternative 
intervention be more effective?

��What combination of interventions would 
best reduce the development of resistance (to 
drugs, insecticides, vaccines, or even in terms 
of changes in mosquito behaviour)?

��As transmission reduces, at what point can 
certain interventions, such as IPTp or even 
ITNs or IRS, be scaled back or withdrawn?

��In low-transmission settings, what combination 
of interventions or changes can help to interrupt 
transmission?

��In areas where elimination has been achieved, 
what level of intervention coverage or 
surveillance is necessary to prevent the return 
of malaria?

Malaria control planners at local and 
country levels
Malaria control planners usually work in national 
control programmes at a central level, though 

also sometimes at the decentralized level, such 
as at a regional, provincial, or district level. With 
few exceptions, they use resources from donors 
and national and local government, though 
malaria control planning may also be planned and 
funded by mining and plantation companies, and 
by bilateral, non-governmental and humanitarian 
organizations.

National level policy-makers often need to 
translate general WHO recommendations to 
more specific guidelines. Where WHO may 
have to use generalized language because of 
the variability of malaria, national-level policy-
makers must set precise criteria, creating a 
transition from policy-making to planning.  And, 
malaria control planning is often initially done in 
a simplified way, assuming that a set of standard 
interventions will lead to an internationally 
agreed-upon goal, such as halving the malaria 
burden by 2010. As progress occurs, there is an 
increasing need for programmes to improve and 
focus their work and to make evidence-based 
projections on the impact of the investments. 
Modelling can help provide such an evidence 
base and the accompanying assessment of the 
effectiveness of the intervention package.

Academic researchers
Mathematical modelling of malaria largely falls 
within the domain of academia. It is conducted at 
the intersection of mathematics, epidemiology, 
and public health research, and there is 
considerable potential for interaction between 
different facets of academia. Modelling is driven 
by results from malaria field research and to 
some extent from health systems and biomedical 
research. In turn, it can help to drive new research 
in these areas by identifying gaps in knowledge 
and priority areas. Within academia, modelling 
is also useful to teach and train academics and 
staff who will work in malaria control.

| ROLE OF MODELLING IN MALARIA CONTROL |
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Product research and development 
planners
Those involved in developing new products for 
malaria control include scientists (overlapping 
with malaria researchers), manufacturers, 
traditional foundations such as the Wellcome 
Trust, and public-private ventures, such as the 
Medicines for Malaria Venture (MMV) and the 
Malaria Vaccine Initiative (MVI). Modelling can 
help to devise target product profiles for new 
interventions, for example the required minimum 
efficacy and half-life to make a new vaccine 
worth developing. Modelling can also determine 
the effects of changes (mainly incremental) in 
product characteristics (such as the durability 
of an insecticide, doses of an antimalarial 
medicine, sensitivity of a diagnostic test) on 
the level of malaria transmission, morbidity 
and mortality. Modelling can also address 
the cost-effectiveness of these changes. 
Another important role for modelling is to help 
devise strategies for product development and 
deployment to mitigate and delay parasite and 
vector resistance.

Donors
Donor organizations such as the World Bank, 
the Global Fund to Fight AIDS, Tuberculosis 
and Malaria, and the US President’s Malaria 
Initative may sometimes undertake specific 
analyses for their own purposes because they 
control considerable funds and must report on 
the use of those funds to their constituents. The 
World Bank, for example, focuses on economic 
development and may need to examine the 
economic consequences of malaria control at 
the country level. Modelling can assist their 
efforts in these analyses and allow them to 
extend individual country analysis to multiple 
countries. Additionally, donors can use 
information from modelling to balance needs 
in research and product development, and to 
assess the merits of investing in malaria control 
against investments in other public and global 
endeavours.

| ROLE OF MODELLING IN MALARIA CONTROL |
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CHAPTER VI

EXAMPLES OF ADDRESSING KNOWLEDGE 
GAPS IN MODELLING MALARIA

While great progress has been made over the past 
century in modelling malaria, many challenges 
remain. There are still many gaps in our knowledge 
and models of malaria biology and ecology, some 
of which are addressed here.

Within-host dynamics of parasite species
Improved knowledge and models of the 
development of parasite species and their 
dynamics in their human and vector hosts are 
needed. Better quantification of the features of the 
parasite’s life cycle is important for understanding 
transmission and improving control. In particular, 
better data and models are needed to understand 
and quantify the relapse in P. vivax and other 
unique aspects of non-falciparum parasites, and 
the nature of interactions between all species.

Human infectious reservoir
Models need to capture the infectious reservoir 
across a range of transmission intensities. Poorly 
understood factors contribute to the variability in the 
transition rates of parasites from the asexual blood 
stage onwards through each subsequent stage 
of the transmission cycle to, and in, the mosquito. 
Even if, for operational purposes, those with 
measurable parasites are considered to be infected 
and, therefore, not distinguished from gametocyte 
carriers, it is important to capture the relative 
infectiousness of different population groups.

Stimulation and decay of human immunity
Natural immunity to malaria that partially protects 
against the disease or reduces transmission is a 
particular challenge for epidemiological models. A 
better understanding of the stimulation, duration, 
and effects of acquired immunity needs to be 
incorporated into models.

Morbidity and mortality
Models are needed to accurately describe the 
relationship between the within-host dynamics of 
the parasite and the consequent direct and indirect 
morbidity and mortality in humans. Although the 
global objective has moved to elimination, there 
is a public health need to model malaria morbidity 
and mortality.

Vector ecology
The seasonal and ecological determinants of 
mosquito densities and the dynamics of larval 
stages and their effect on adult fitness and 
density are poorly understood. In addition to field 
studies, models are needed to consider the effects 
of seasonality, dry-season refuges, mosquito 
dispersal patterns, the potential of larval control, 
and optimal larval control strategies. The effects 
of infection and environment on adult mosquito 
behaviour, infectivity, and survival also need to 
be considered in field research and modelling 
efforts.
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Heterogeneities in hosts, parasites and 
vectors
Correlated heterogeneities in the range of 
biological and population behavioural mechanisms 
are not comprehensively addressed in current 
malaria models. There are substantive problems 
in measuring levels of heterogeneity and 
incorporating their effects in models that need to 
be overcome. This is likely to have a greater impact 
on model results as transmission is reduced.

Parasite and host movement
As transmission is reduced, the effects of the 
parasite’s geographical movement—resulting 
from both vector and human movements—will 
dominate the dynamics. The relative role of 
movement versus refuge in maintaining the 
infectious reservoir during the dry season in 
epidemic settings remains poorly understood but 
will be crucial to devising a strategy to achieve 
elimination and hold the line. Human movement, 
in particular, is difficult to quantify based on 
current data. Spatially explicit models that can 
track parasite movement and link spatially distinct 
populations need to be developed.

Effects of (new) interventions
Models of drug dynamics (pharmacokinetics and 
pharmacodynamics, dosing regimen) and vaccine 
dynamics (in particular, transmission-blocking 
varieties) need to be developed. Similarly, models 
are needed describing the ecology of genetically 
modified mosquitoes and of variations in the 
susceptibility of the vector and the potential 
impact on malaria.

The scope of these models needs to be expanded 
to consider the overall effects of the health 
system, taking into account the capabilities of 
pre-existing health system infrastructures. These 
expansions include the effects of combinations 
of interventions/tools, the effects of scheduling 
interventions, and supporting the optimization of 
target product profiles and their alignment with 
existing packages of interventions. All these 

components need to be supported by micro-
economic appraisal.

Resistance to interventions
Intervention resistance is defined broadly to 
include any behavioural and heritable changes 
that reduce the effectiveness of drugs, pesticides, 
vaccines, and other interventions. Target product 
profiles will need to consider model-based 
analyses of the likely evolution of resistance. 
Modelling needs to be developed that integrates 
population genetics and direct intervention 
effects, particularly: PK/PD data for drug 
resistance, behavioural and physiological changes 
in response to vector control, and molecular 
epidemiology for vaccine escape variants. Crucial 
for this evolution is a better characterization of 
the biological cost of resistance. As new tools are 
developed, it will be important to plan deployment 
strategies with an awareness of the effects they 
will have on the evolution of resistance.

Uncertainty analysis and communication of 
uncertainty
Models of any aspect of malaria inherently contain 
uncertainty and it is important to communicate 
this when presenting results. There is a need 
to further develop and apply techniques to 
interpret the effects of uncertainties in both 
model formulation and available data. There is a 
need also for operational research on how best 
to communicate the effects of this uncertainty 
to user groups who may not be familiar with the 
details of uncertainty analysis. This is an essential 
step in translating model results into policy.

| EXAMPLES OF ADDRESSING KNOWLEDGE GAPS IN MODELLING MALARIA |
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Modelling can help devise realistic targets for 
interventions. While such targets have usually 
been set without modelling inputs, tools are 
now available to help define goals from desired 
coverage levels. Furthermore, models can provide 
more information on the longer-term impacts of 
interventions than is possible through field trials 
or programme data. 

It is important to note, however, that mathematical 
models are created with underlying assumptions 
and driven by data that inherently contain 
measurement errors; they have their limitations. 
While models can help decision-makers 
understand disease dynamics and devise control 
strategies, if the models are applied beyond 
feasible assumptions or after using unreliable data, 
the results can be meaningless at best, dangerous 
at worst.

A good example of this is climate and weather 
models. They respect reliability bounds but are 
still used as powerful predictive tools. Few people 
would expect a weather forecast to say whether it 
is going to rain at a particular place at a particular 
time. However, they would mostly trust the 
forecast to tell them whether to take an umbrella. 
The weather forecast gives people a general 
idea of what to expect but not a full and complete 
prediction. Similarly, models can play a beneficial 
role in malaria control provided users know how to 
interpret results and at what level they are useful.

Another facet of weather models that the 
malaria modelling community can learn from 
is the comparison of multiple independently 
derived models as a way of arriving at a more 
robust set of predictions. As emphasized by the 
Malaria Eradication Research Agenda report (3), 

t

CHAPTER VII

CONCLUSION
Modelling may seem a long way removed from day-to-day activities in malaria control, 
especially if control is seen largely as being about illness and death. When control efforts 
embrace the concept of transmission reduction (in the renewed discussion on elimination 
and eradication, for example), modelling takes a more prominent role. Although mathematical 
modelling has played a significant role throughout the history of malaria control, as it has for a 
number of other diseases (27), including onchocerciasis (33) and foot and mouth disease (34), 
it should in the future play a stronger part in informing policy development.
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comparing multiple models leads to higher 
confidence where the results of the different 
models agree, and point to uncertainty and 
need for more attention where the results 
do not. This step is essential in successfully 
translating model results into useful and 
reliable policy recommendations.

Models can mean all things to all people, and 
consequently are often tailored to a given set 
of questions. Implementing models, therefore, 
should be done in partnership between 
technical experts in mathematical modelling, 
and decision-makers who need their guidance. 
A lack of communication and understanding 
between these groups is usually where 
criticisms of modelling start (35).

Good communication is essential between 
health policy decision-makers, those with 
expertise in field and laboratory malaria, 
and those with expertise in mathematics, so 
that models are formulated with important 
biological realities in mind and their results 
interpreted with care. In addition, training 
endemic-country scientists to develop 
modelling skills is essential to ensuring the 
local sustainability of modelling efforts. 
Throughout much of its history, mathematical 
modelling has had an important symbiotic 
relationship with physics. It is hoped that the 
same can happen with epidemiology in general, 
and malaria epidemiology in particular, driving 
both fields and leading to improved malaria 
control and elimination.

| CONCLUSION |
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TECHNICAL ANNEX 1. Glossary

Modelling terms

System: A set or arrangement of items so related 
or connected, they form an integrated whole: 
the malaria infection and illness system, for 
example, where the malaria parasite, mosquito 
vector, human host and their determinants and 
interactions establish the pattern of malaria 
infection and illness in the population.

Mathematical model: An abstraction of a 
physical system that uses precise language to 
describe its behaviour.

Statistics: A branch of science concerned with 
the collection and interpretation of quantitative 
data.

Deterministic system: No randomness is present 
and any given starting state at a given point in 
time always leads to the same consecutive 
states.

Stochastic system: Includes randomness or 
noise.

Differential equations: A system based on 
continuous values of time.

Difference equations: A system based on 
discrete values of time.

Agent-based/individual-based model: A simulation 
or computational model composed of more than 
one agent or individual that interacts (usually 
stochastically) within a network.

Measurements of malaria

Parasite rate (PR): The prevalence of malaria in a 
population; it is the proportion of the population 
with asexual blood-stage parasites. In a stable 

malarious area, this proportion varies with age. 
People are rarely born infected but parasite 
rate rises with age until it reaches a plateau in 
older children. By age 10, some immunity begins 
to develop and parasite rate begins to decline. 
By the age of 20, it has fallen by a third from 
the plateau. By the end of life, it is at two thirds 
of the plateau (1). As immunity rises in older 
children and adults, parasite densities decline. 
This measured decline in parasite rate is partly 
attributable to the inability to detect parasites. 
There may also be some real declines in parasite 
rate because of immunity and other factors. The 
parasite rate in children aged more than two but 
less than 10 is called the standard parasite rate.

Entomological inoculation rate (EIR): The 
expected number of infectious bites, per person, 
per unit time (usually a year). The EIR is the 
product of the sporozoite rate (the proportion 
of mosquitoes with sporozoites in their salivary 
glands) and the human biting rate (the number 
of mosquito bites per person, per year). Human 
biting rates are estimated by catching mosquitoes 
as they try to land or by catching them in traps.

Force of infection: The rate at which humans 
are infected. The force of infection is closely 
related to the EIR, at least conceptually. While 
EIR is measured by counting infectious vectors, 
the force of infection is estimated by looking at 
the rate at which humans become infected. It 
is defined as the number of new infections per 
person, per year. One way to estimate the force of 
infection is to clear parasites, and then observe 
people until they become infected. The signs of 
infection can be detected by the lingering immune 
response, long after infections have cleared; so 
another way to estimate the force of infection is 
to plot the prevalence of an immune marker in the 
blood serum, or seroprevalence, against age and 
look at the slope in young children. Such methods 
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provide a sensitive study of malaria transmission 
in low-intensity settings.

Annual parasite incidence (API): Designed to 
measure the number of malaria fevers per year, 
per thousand people. The proportion of the 
population examined is called the human blood 
examination rate (HBER). Suspicious fevers are 
examined for parasites and the proportion of 
parasite positive slides is called the slide positivity 
rate (SPR). API is defined as the product of the 
two (API = HBER × SPR). Most API data come 
from clinics where suspected fevers are examined 
for the presence of parasites but are often 
supplemented by active case detection. When 
malaria becomes rare, it becomes increasingly 
difficult to detect transmission using PR (2). API 
can be a reliable method for reporting new malaria 
infections in low-intensity settings. API data 
are difficult to interpret as a measure of malaria 
intensity. API has low value in places where PR is 
high enough to measure but it may be the only way 
to measure progress towards elimination when 
malaria transmission is lowered (2).

Vectorial capacity: The expected number of 
infectious bites arising from all the mosquitoes 
that bite a single infectious person on a single 
day (3). Vectorial capacity measures the potential 
of the mosquito population to transmit malaria, 
not the actual level of malaria transmission in a 
given location.

Basic reproductive number (R0): The number of 
infected humans that would arise from a single 
infected human in an otherwise fully susceptible 
population, or the number of infected mosquitoes 
that would arise from a single infected mosquito 
after one complete generation of the parasite. It 
measures maximum potential transmission, so it 
describes populations with no immunity and no 
malaria control.

Controlled reproductive number (RC): While R0 
describes maximum potential transmission, RC 
describes maximum potential transmission in a 

population with malaria control. R0 measures the 
intrinsic potential for epidemics in a population 
with no immunity, while RC measures the 
potential for epidemics after taking into account 
all of the measures that have been put in place to 
slow transmission.

Elimination terms

Control: Reduction of disease incidence, 
prevalence, morbidity and mortality to a locally 
acceptable level as a result of deliberate efforts. 
Continued intervention measures are required to 
maintain the reduction.

Elimination: Reduction to zero incidence as 
a result of deliberate prevention efforts of 
locally transmitted infection caused by the four 
Plasmodium species that infect humans in a 
defined geographical area. Continued intervention 
measures are required to prevent reintroduction.

Receptivity (outbreak risk): In an area where 
elimination has been achieved, receptivity is a 
measure of the presence of vector anopheles 
mosquitoes and the existence of other 
ecological and climatic factors favouring malaria 
transmission. Receptivity is a reflection of 
vectorial capacity of the local anopheles mosquito 
population during the season most favourable for 
malaria transmission (4).

Vulnerability (reintroduction risk): In an 
area where elimination has been achieved, 
vulnerability is a measure of the influx of humans 
or mosquitoes infected with malaria. It includes: 
the proximity to malarious areas or liability to the 
frequent influx of humans and vectors; the level 
of malaria awareness of the population; and the 
level of sophistication of the health authorities (4).

Eradication: Permanent reduction to zero as a 
result of deliberate prevention efforts of the global 
incidence of infection caused by the four species 
of Plasmodium that infect humans. Intervention 
measures are no longer needed.
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Superinfection, within-host dynamics and 
immunity
Superinfection is the notion that additional 
infection in an already infected or infectious 
individual has an effect and may not be ignored. 
This is typical in macroparasites, especially 
in helminthes where the severity of infection 
depends on the number of incoming infections 
as most worms do not reproduce in the body. 
While the asexual blood stages of the malaria 
parasite freely reproduce within the human 
body, additional infections can affect the onset 
of clinical symptoms and the time it takes to 
clear infection.

The dynamics of the malaria parasite, 
especially P. falciparum, in the human body are 
complicated and show multiple fluctuations, 
leading to episodes of clinical disease and high 
infectivity. These infections lead to naturally 
acquired immunity that, in turn, regulates the 
dynamics of the parasite. While immunity is not 
fully understood, it is assumed that repeated 
infections provide protection against clinical 
disease, and possibly against new infections, 
and that this protection may wane over an 
extended infection-free period.

The original Ross–Macdonald model assumed 
that new infections made no difference (and were 
therefore ignored) and that the dynamics of the 
malaria parasite were similar to that of a virus. 
Walton was the first to describe a formula for 
superinfection (5). A few years later, Macdonald 
developed a model for simulating complex 
infections (6) but while the written description 
of his assumptions was consistent with Walton’s 
model, the equations corresponded to a different 
set of assumptions (7). Bailey described a 
“queuing model” that described dynamical 
changes in the number of different parasite 

types using the same assumptions as Walton (8). 
This queuing model motivated the development 
of a much simpler formula in the Garki model 
(9). The queuing model was later extended and 
generalized by Nasell to describe superinfection 
with a finite number of types (10), and by Dietz to 
consider density dependence (11).

Macdonald had assumed that there was no 
naturally acquired immunity. The Garki model (9) 
allowed for a proportion of infected humans to 
subsequently become immune and no longer 
transmit malaria. The Garki model was criticized 
for making assumptions about immunity that 
were severe and not consistent with data. For 
example, in an area where malaria prevalence 
was more than 90% in children, and where 
immunity in adults would tend to be quite 
high, adults did, in fact, transmit malaria to 
mosquitoes, albeit at lower rates (12).

Following the Garki model, Aron and May (13) 
introduced a model (further explored by Aron (14)) 
that combined the infected but non-infectious 
classes to create a susceptible-infected-
recovered-susceptible (SIRS) compart-mental 
model, with dynamics such as viral diseases. The 
assumption in the Garki model that made these 
SIRS models relevant was that only non-immune 
individuals who had been recently infected were 
infectious. In response to the critique of the 
Garki model that adults also transmit malaria, 
some SIRS models were modified to allow 
semi-immune individuals to remain infectious to 
mosquitoes but to transmit malaria with lower 
efficiency (15, 16). However, recent evidence (17) 
suggests that naturally acquired immunity only 
affects parasite densities and clinical incidence 
but not duration of infection, which is contrary to 
the assumptions of SIRS models. Furthermore, 
though adaptations of SIRS models can capture 

TECHNICAL ANNEX 2. Examples of 
Extensions to the basic malaria model
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the effects of superinfection, most SIRS models 
of malaria have failed to do so.

The Garki model has also been extended 
to consider the transmission dynamics and 
epidemiology of serial infection and immunity to 
infection with multiple parasite “strains” (18, 19). 
There have also been subsequent developments 
in models of the malaria parasite within the 
human body and its interaction with the immune 
system (20–23), which can be included in 
individual-based models.

Individual-based models, such as by Smith et al 
(24, 25) allow each infection to run its own course 
within the human body, qualitatively reproducing 
available data on within-host dynamics of 
malaria. They also allow superinfection, where 
multiple infections can enter the body and run 
their own course, interacting with each other 
only through the immune system, which grows 
in response to the infections, modulates their 
dynamics and potentially decays if there are no 
new infections.

Heterogeneity
An implicit assumption of the Ross–Macdonald and 
basic SIR models is homogeneity: all humans (and 
all mosquitoes) are identical and may be treated as 
such. Each human has the same probability of being 
bitten by a mosquito, consequently developing 
malaria if the bite was infective and passing the 
infection back to mosquitoes. In reality, humans and 
mosquitoes are heterogeneous: some people are 
more likely to be bitten, to develop clinical malaria, 
to have access to interventions and treatment and 
to infect mosquitoes.

During the 1980s, motivated in part by the 
outcome of the Garki project but also by studies of 
sexually transmitted diseases, attention focused 
on the biting behaviour of mosquitoes and its 
consequences for disease transmission, and in 
particular, on the importance of heterogeneous 
biting (26, 27). Mathematical modelling suggested 
that heterogeneous biting would amplify 

transmission, raising R0 proportionately to the 
squared coefficient of variation in human biting 
rates.

Recent individual-based models (24, 25, 28, 29) 
have included heterogeneities at several levels, 
such as: mosquito biting behaviour and survival; 
the development of immunity in humans; and the 
within-host dynamics of the parasite.

Human demography
A special form of heterogeneity is age structure 
and demography. In humans, most facets of 
malaria heterogeneity discussed above, such 
as the likelihood of being bitten, development of 
clinical malaria, development of immunity, and 
mortality rates, and non-malaria heterogeneities, 
such as non-malaria mortality rates, vary with 
age. Furthermore, as human age is relatively 
easy to measure and quantify, many measures 
of malaria transmission, such as prevalence and 
incidence, can be denoted as a function of age. 
Models that include age not only allow us to 
better understand malaria but also provide self-
evaluation through comparison of their output to 
age-prevalence and age-incidence data.

Lotka, who also analysed malaria, developed a 
model of human age distribution in 1922 (30) but 
it was not until 1950 that Macdonald included age 
structure in a model for malaria transmission (31). 
Though Macdonald did not explicitly include age 
in his model, he fitted his parameters for different 
age groups to age stratified data. Since then, 
numerous models have included age structure, 
either in the form of differential equations (32) or 
in individual-based models that assign an age to 
each individual in the population.

Mosquito population dynamics
The level of malaria transmission is closely linked 
to the density and longevity of adult female 
mosquitoes, which, in turn, are determined by 
climate and larval dynamics in breeding sites. 
For example, in many places it is likely that the 
number of eggs laid is much greater than that 
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which the breeding sites can support and the 
emergence of new adults is regulated by density-
dependent mortality in larvae. However, if the 
adult density were significantly reduced (for 
example, through vector control interventions), 
the emergence of new adults would depend 
more on the number of eggs laid. There is also 
evidence that the fitness (and correspondingly, 
longevity) of adult mosquitoes depends on larval 
density (33).

Dye (34) modelled the dynamics of Aedes aegypti 
with difference and differential equations, while 
Otera et al (35) used a stochastic model. Depinay 
et al (36) modelled the dynamics of anopheles 
mosquitoes with an individual-based model.

Seasonality
In most parts of the world, malaria transmission 
is not constant but varies seasonally over the 
year. The emergence of mosquitoes depends on 
the availability of larval habitats, which depends 
on rainfall and temperature. The development 
time of the parasite within the mosquito and the 
human-biting rate of mosquitoes depend on the 
ambient temperature. As temperature and rainfall 
vary seasonally, malaria transmission also tends 
to vary seasonally in most locations, leading to 
some months when there is a peak of intense 
transmission and other months that are relatively 
free of malaria. This affects the planning of time-
limited interventions, such as IRS.

Macdonald first explored modelling epidemics in 
1953 (37). Since then, most models that include 
seasonality assume a periodic function for the 
number of mosquitoes, starting from Aron and 
May (13) to more recent models (38), though 
Hoshen and Morse linked a model of climate to a 
model of malaria transmission (39).

Interventions
The Ross–Macdonald model was able to make 
valuable statements about which parameters 
had the biggest effect on the basic reproductive 
number: increasing the adult death rate had 

the strongest effect on lowering malaria 
transmission. Since then, many models have been 
developed to either explicitly include the effects 
of interventions or include specific details of the 
malaria life cycle that can be targeted by the 
interventions.

Saul et al (40) developed a model of mosquito and 
malaria transmission dynamics that has since 
been extended to model several vector control 
interventions, including zooprophylaxis (41), ITNs 
(42–45) and combinations of ITNs with IRS (46). 
Okell et al developed a compartmental model 
to investigate the effects of artemisinin-based 
combination therapies (ACTs) on transmission 
(47), and simpler Ross–Macdonald models have 
been adapted to look at transmission at low 
intensity and the added value of primaquine (48). 
An individual-based model has been used to 
investigate the effects of intermittent preventive 
treatment in infants (49) and vaccines (50–52). 
Other models have been developed to consider 
the effects of releasing transgenetically modified 
mosquitoes and what is required to establish 
them in the mosquito population (53, 54).

Migration: Reintroduction risk (vulnerability) 
and outbreak risk given reintroduction 
(receptivity)
Any modelling to plan for malaria elimination 
and eradication will need to include the effects 
of migration and movement of infected humans 
(or mosquitoes) into areas that have eliminated 
malaria. If the malaria control efforts have ceased 
after elimination and receptivity has increased, 
introduced infections could trigger epidemics 
and/or lead to the reestablishment of endemic 
malaria in that location. This requires spatially 
explicit models. It is only recently that these 
issues have begun to be addressed by models 
(55–57).
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Figure A2.1 
Plasmodium falciparum malaria global endemicity
This figure shows the intensity of the Plasmodium falciparum parasite prevalence rates (PPR) in children 
aged 2–10 years.

Source: Malaria Atlas Project (60).

Note: The lighter colour shows low intensity and the darker colour shows the highest intensity of malaria transmission 
(dark grey = epidemic malaria; light grey = no malaria transmission). The dotted line represents approximately the Line of 
Control in Jammu and Kashmir agreed upon by India and Pakistan. The final status of Jammu and Kashmir has not yet been 
agreed upon by the parties.

Mapping malaria
Geospatial statistical models are a different 
quantitative approach to malaria that do not 
necessarily model the underlying processes 
of malaria but that relate environmental and 
sometimes intervention data to transmission or 
prevalence data from survey sites to produce 
transmission, prevalence or disease maps across 
broad geographical sites (58–61) (see Fig. A2.1 
and A2.2). There has also been some work on 
mapping the distribution of malaria vectors 
across the world (62–64).

Drug and insecticide resistance
A significant hurdle in Global Malaria Eradication 
Programme was the evolution of drug resistance 

to chloroquine in parasites and insecticide 
resistance to DDT in mosquitoes. Resistance 
continues to be a key consideration in malaria 
control, with reports of the falling effectiveness 
of ACTs on the Thai-Cambodia border (65) and 
of the failure of pyrethroids to control mosquito 
populations (66). Models have looked at the 
evolution of drug resistance and its effects 
(67–69), to justify the use of combination 
therapies (70), to evaluate the likely effects of 
a global subsidy for ACTs (71), and weigh the 
effects of multiple first-line therapies (72, 73) 
though there has been little work on modelling 
insecticide resistance from public health use, and 
its impact on public health, except for statistical 
analysis (74).
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Figure A2.2 
Global clinical burden of malaria
This figure shows the intensity of clinical burden of malaria, that is, the number of clinical cases of 
malaria per 10,000 people per year.

Source: Malaria Atlas Project (61).

Note: The lighter colour shows low intensity and the darker colour shows the highest intensity of malaria transmission (grey = 
no malaria transmission). The dotted line represents approximately the Line of Control in Jammu and Kashmir agreed upon by 
India and Pakistan. The final status of Jammu and Kashmir has not yet been agreed upon by the parties.
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